If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6x2 + 7 + -12 = 51 + -40x Reorder the terms: 7 + -12 + 6x2 = 51 + -40x Combine like terms: 7 + -12 = -5 -5 + 6x2 = 51 + -40x Solving -5 + 6x2 = 51 + -40x Solving for variable 'x'. Reorder the terms: -5 + -51 + 40x + 6x2 = 51 + -40x + -51 + 40x Combine like terms: -5 + -51 = -56 -56 + 40x + 6x2 = 51 + -40x + -51 + 40x Reorder the terms: -56 + 40x + 6x2 = 51 + -51 + -40x + 40x Combine like terms: 51 + -51 = 0 -56 + 40x + 6x2 = 0 + -40x + 40x -56 + 40x + 6x2 = -40x + 40x Combine like terms: -40x + 40x = 0 -56 + 40x + 6x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-28 + 20x + 3x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-28 + 20x + 3x2)' equal to zero and attempt to solve: Simplifying -28 + 20x + 3x2 = 0 Solving -28 + 20x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -9.333333333 + 6.666666667x + x2 = 0 Move the constant term to the right: Add '9.333333333' to each side of the equation. -9.333333333 + 6.666666667x + 9.333333333 + x2 = 0 + 9.333333333 Reorder the terms: -9.333333333 + 9.333333333 + 6.666666667x + x2 = 0 + 9.333333333 Combine like terms: -9.333333333 + 9.333333333 = 0.000000000 0.000000000 + 6.666666667x + x2 = 0 + 9.333333333 6.666666667x + x2 = 0 + 9.333333333 Combine like terms: 0 + 9.333333333 = 9.333333333 6.666666667x + x2 = 9.333333333 The x term is 6.666666667x. Take half its coefficient (3.333333334). Square it (11.11111112) and add it to both sides. Add '11.11111112' to each side of the equation. 6.666666667x + 11.11111112 + x2 = 9.333333333 + 11.11111112 Reorder the terms: 11.11111112 + 6.666666667x + x2 = 9.333333333 + 11.11111112 Combine like terms: 9.333333333 + 11.11111112 = 20.444444453 11.11111112 + 6.666666667x + x2 = 20.444444453 Factor a perfect square on the left side: (x + 3.333333334)(x + 3.333333334) = 20.444444453 Calculate the square root of the right side: 4.521553323 Break this problem into two subproblems by setting (x + 3.333333334) equal to 4.521553323 and -4.521553323.Subproblem 1
x + 3.333333334 = 4.521553323 Simplifying x + 3.333333334 = 4.521553323 Reorder the terms: 3.333333334 + x = 4.521553323 Solving 3.333333334 + x = 4.521553323 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + x = 4.521553323 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + x = 4.521553323 + -3.333333334 x = 4.521553323 + -3.333333334 Combine like terms: 4.521553323 + -3.333333334 = 1.188219989 x = 1.188219989 Simplifying x = 1.188219989Subproblem 2
x + 3.333333334 = -4.521553323 Simplifying x + 3.333333334 = -4.521553323 Reorder the terms: 3.333333334 + x = -4.521553323 Solving 3.333333334 + x = -4.521553323 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + x = -4.521553323 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + x = -4.521553323 + -3.333333334 x = -4.521553323 + -3.333333334 Combine like terms: -4.521553323 + -3.333333334 = -7.854886657 x = -7.854886657 Simplifying x = -7.854886657Solution
The solution to the problem is based on the solutions from the subproblems. x = {1.188219989, -7.854886657}Solution
x = {1.188219989, -7.854886657}
| 8x^3-72=0 | | 6x+10-2x=4x+8 | | x^2+x-45=0 | | 4x+18.75=26.55 | | 9x^3-36=0 | | X^2-x-11=0 | | 6=8t+56 | | I=112x-223478 | | 2(5z-1)-5(z+2)=3(z+1) | | 12x-33=7x+37 | | 3x-7=9x-12 | | 8x+76=-8x+80 | | (a+2)+3(3a-1)= | | (5x+3)(3x-5)=0 | | 4x(x-8)=0 | | (6x+5)(3x^2-11x-4)=0 | | (6ab-a)+3(2a-3ab)= | | 5m+4(2m+5n)= | | 6x+10-x=5(x+2) | | 5(y+2y)-2=12 | | 6x=3x+18 | | 2x^2-6x=20 | | 2x+3x-4=1 | | 2-7(n-3)=-1 | | 2x^2+2x=x^2+x | | x*x=48 | | x*x*x=48 | | X^2+7x+120=0 | | x+12=44 | | x*x=11 | | 18-x=19 | | 3x/2-x+3/3=8-x+2/4 |